Syntheses and Ultraviolet Spectra of Aromatic Azo Compounds. IV. Naphthylazobenzene Derivatives

By Yujiro Nomura and Hiroyuki Anzai

(Received March 5, 1964)

In the previous papers¹⁻³⁾ of this series it could be prepared conveniently by the reacwas shown that many azobenzene derivatives tions of the zinc chloride double salts of

TABLE I. NAPHTHYLAZOBENZENES PREPARED BY THE REACTION:

	ſ ĭ +	$N \equiv N + BrM$	$g-\langle \rangle \longrightarrow []$	∬ +N=N-∢	$\langle \rangle + MgBr^+$	
			R R	//	R R	
No.	Naphthyl	R	M. p., °Ca)	Yield, %b)	Color	Found: N, %c)
I	α-	H	$66.5\sim67.5^{\text{d}}$	22	Red	12.00
II	β-	H	81.5~82.5e)	11	Orange	11.76
III	α-	o -CH $_3$	67~68f)	7	Red	11.00
IV*	β-	$o ext{-}\mathrm{CH}_3$	70~71	12	Orange	11.24
V	α-	m -CH $_3$	42~43g)	23	Red	11.13
VI*	β-	m -CH $_3$	98~99.5	6	Orange yellow	11.03
VII*	α-	$p\text{-CH}_3$	81~82	20	Red	11.17
VIII*	β-	$p\text{-}\mathrm{CH}_3$	126~127	7	Orange yellow	11.20
IX*	α-	o-CH₃O	102~103	12	Red	10.92
X	β-	$o ext{-}\mathrm{CH}_3\mathrm{O}$	93~94.5h)	11	Orange	10.88
XI*	α-	m -CH $_3$ O	55~56	12	Orange red	10.92
XII*	β-	m -CH $_3$ O	67~68	6.4	Orange yellow	10.40
XIII*	α-	p -CH $_3$ O	$73 \sim 74.5$	9	Orange red	10.42
XIV*	β-	$p\text{-CH}_3O$	102~103	11	Orange	10.40
XV*	α-	o-Br	103~104	3.5	Orange red	9.11
XVI*	β-	o-Br	92.5~93	12	Orange yellow	9.08
XVII*	α-	m-Br	84~85	4.2	Red	8.95
XVIII*	β-	m-Br	117~118	12	Orange yellow	9.26
XIX*	α-	$p ext{-}\mathbf{B}\mathbf{r}$	132~133	11.4	Orange red	9.23
XX*	β-	$p ext{-}\mathbf{Br}$	142.5~143	13	Orange red	8.85

- * New compound
- a) All temperatures in Tables I-III are uncorrected.
- b) Based on the bromo compound used to prepare the Grignard reagent.
- c) Calcd. % of N for naphthylazobenzene $C_{16}H_{12}N_2$ (I, II): 12.06.
 - Calcd. % of N for naphthylazotoluene C₁₇H₁₄N₂ (III-VIII): 11.29.
 - Calcd. % of N for naphthylazoanisole C₁₇H₁₄N₂O (IX-XIV): 10.68.
 - Calcd. % of N for naphthylazobromobenzene $C_{16}H_{11}BrN_2\ (XV-XX)$: 9.00.
- d) The reported m. p. of I is 63.5°C40 or 70°C50. It was prepared by the deamination of 4phenylazo-1-naphthylamine.
- e) The reported⁵⁾ m. p. of II is 84°C. It was prepared by condensing nitrobenzene with β naphthylamine in the presence of sodium hydroxide at 180°C.
- f) The reported⁴⁾ m. p. of III is 52°C. It was synthesized by the deamination of 4-(o-tolylazo)-1-naphthylamine, which had been prepared by the coupling of o-toluenediazonium chloride with α -naphthylamine.
- g) The reported⁶⁾ m. p. of V is $43\sim44^{\circ}$ C. It was prepared by the reaction of N-sulfinyl- α naphthylamine with *m*-tolylhydroxylamine.
- h) The reported⁷⁾ m. p. of X is 92.5°C. It was prepared by condensing o-nitroanisole with β -naphthylamine in the presence of sodium hydroxide at 170~180°C.

Part III: Y. Nomura, H. Anzai, R. Tarao and K. Shiomi, This Bulletin, 37, 967 (1964).
Y. Nomura, ibid., 34, 1648 (1961).
Y. Nomura and H. Anzai, ibid., 35, 111 (1962).
R. Nietzki and R. Zehntner, Ber., 26, 143 (1893).
G. M. Badger and G. E. Lewis, J. Chem. Soc., 1953,

^{2151.}

⁶⁾ A. Michaelis and K. Petou, Ber., 31, 995 (1898).

⁷⁾ G. M. Badger and R. G. Buttery, J. Chem. Soc., 1954, 2243.

⁸⁾ G. Kalischer, R. Müller and F. Frister, Friedl., 15, 716 (1925).

9.22

TABLE II. ETHYL NAPHTHYLAZOBENZOATES PREPARED BY THE REACTION:

* New compound

β-

XXVI*

a) Based on the α - or β -bromonaphthalene used to prepare the Grignard reagent.

[112.5~113.5]

- b) Calcd. % of N for ethyl naphthylazobenzoate C₁₉H₁₆N₂O₂: 9.21.
- c) The yield was poor, and analytically pure sample could not be obtained after distillation in vacuo. However, its structure was confirmed by hydrolyzing it to the free acid (XXVII of Table III).
- d) Purified by column (alumina) chromatography.

p-

TABLE III. NAPHTHYLAZOBENZOIC ACIDS

trace

COOH

Orange

No.	Naphthyl	COOH	M. p., °C	Color	Found: N, %a)
XXVII*	'α-	0-	141~142	Orange red	10.21
XXVIII*	β-	0-	146~146.5	Orange yellow	10.01
XXIX	α-	<i>m</i> -	207 and $>320^{b}$	Orange	9.97
XXX*	β-	<i>m</i> -	220~221	Orange yellow	10.02
XXXI*	α-	p-	234~234.5	Orange	10.02
XXXII*	β-	p-	220	Orange yellow	9.91
XXIX XXX* XXXI*	α- β- α-	m- m- p-	207 and >320 ^b) 220~221 234~234.5	Orange Orange yellow Orange	9.97 10.02 10.02

- * New compound
- a) Calcd. % of N for naphthylazobenzoic acid $C_{17}H_{12}N_2O_2$: 10.14.
- b) XXIX melted at 207° C and solidified above its melting point to needles, which did not melt even at 320° C. The reported⁸⁾ m.p. of XXIX is 207° C. It was prepared by the deamination of m-(4-amino-1-naphthylazo) benzoic acid, which had been obtained by coupling m-carboxybenzenediazonium chloride with α -naphthylamine.

TABLE IV. ELECTRONIC ABSORPTION MAXIMA OF NAPHTHYLAZOBENZENES IN ETHANOL

			K-Band						
No.	λ , m μ	ε	λ , m μ	ε	λ , $\widetilde{m\mu}$	ε	λ , m μ	ε	
I	217.4	52300	270.0	12630	371.7	14390	-		
II	230.0*	23940	260.0*	10250	328.5	23970			
			264.2	13540					
			277.0	14420					
			287.5	14570					
III	214.7*	25840	256.9	5966	374.7	8199			
IV	229.1	21990	263.5	12280	332.4	23060	443.3	1028	
			277.6	12060					
			288.5	12320					
V			264.9	9938	371.5	12680			
			272.9*	9690					
			294.7	8101					
VI	230.0*	22880	265.9	12840	330.0	22370	440.0*	1228	
			277.6	13090					
			288.2	13350					
VII	215.3	40580	262.9	9220	373.5	12780			
			309.4	8498					
VIII	234.7	22020	262.3	12600	335.0	25510	450.0*	1295	
			278.8	12440					
			290.0	12720					

TABLE IV (Continued)

				K-Band				
No.	λ , m μ	ε	λ , m μ	ε	λ , $\widetilde{m\mu}$	$\overline{}_{\varepsilon}$	λ , m μ	ε
IX	,	-	270.0*	8773	385.0	12730	,	
			293.2	6120				
X			263.2	12470	325.9	15820		
			278.5	11680	367.6	17140		
			289.4	11710				
XI			253.1*	12550	374.1	13620		
			292.4	7440				
XII			266.0*	13410	325.6	20430	460.0*	1018
			276.9	12980				
			287.4	12930				
XIII			250.0*	9540	378.6	11480	490.0*	590
			290.0*	3302				
XIV	242.4	22310	282.4	9582	345.9*	25780		
			294.1	9714	357.0	26400		
XV	245.9*	11990	268.2	9901	382.9	11820		
			276.5	9581				
			295.0*	7275				
XVI	251.8	14870	267.7*	13210	332.7	22760		
			278.3	12400				
			287.9	12040				
XVII			272.9*	9716	378.2	10680		
			276.5	9850				
3/3/333	225.04	24410	285.9*	7746	220.0	26420		
XVIII	235.9*	24410	266.0	15250	330.9	26430		
			276.3	15940				
VIV	216.5	44600	286.5	15610	270 1	15440		
XIX	216.5	44690	267.6	10760	379.1	15440		
			275.4	10810				
XX	231.5	22040	302.0 265.9	10270 12350	335.4	28110		
AA	231.3	22040	278.2	12950	333.4	20110		
			288.8	13270				
XXII	236.5	18400	287.3	12000	325.9	19000		
XXIII	250.5	10400	275.3	9960	378.2	9020		
XXIV	238.2	24000	274.7	15900	330.0	22100		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	247.1	23000	287.1	14700	22010			
	255.3	23500	207.1	14700				
XXV	236.5	10400	276.5	15100	387.1	12500		
XXVI		10100	268.2	15400	334.7	25200		
			277.7	15500				
			288.2	15100				
XXVII	238.7	12300	288.8	8030	372.4	11300		
XXVIII	237.6	18400	260.0	14200	330.0	19900		
			276.5	12500				
			288.8	12200				
XXIX	237.3	17600	293.5	7900	371.8	10600		
XXX	252.4	20900	275.9	12900	328.8	20200		
			288.2	12700				
XXXI	238.8	11900	263.8	11000	378.8	11800		
			300.0	8750				
XXXII			267.1	10200	337.1	22100		
			279.4	10400				
			290.9	10800				

^{*} Wavelength of shoulder.

diazonium chlorides with Grignard reagents. We would now like to report, in extension of this investigation, on the synthesis of naphthylazobenzenes and their derivatives by the same reaction.

 α - and β -Naphthylazobenzene (I, II) and their eighteen derivatives (III—XX) carrying a substituent such as methyl, methoxyl, or bromine on a benzene ring have been prepared by the reactions of the zinc chloride double salt of α - or β -naphthalenediazonium chloride with substituted phenylmagnesium bromides. They are summarized in Table I, in which new compounds are asterisked.

Six ethyl naphthylazobenzoates (XXI—XXVI) have been obtained by the reactions of the zinc chloride double salt of ethoxy-carbonylbenzenediazonium chloride with α - or β -naphthylmagnesium bromide. They are all new compounds and are listed in Table II. By the hydrolysis of ethyl naphthylazobenzoates, the corresponding free acids (XXVII—XXXII) were prepared; they are listed in Table III.

The electronic absorption spectra of these naphthylazobenzenes were measured in ethanol solutions; their maxima are listed in Table IV.

The K-band of the α -naphthylazobenzene derivatives shifts towards a wavelength longer by about 45 m μ than that of the corresponding β -isomers, in spite of the β -naphthyl dyes having a considerably greater intensity. A similar difference of spectra between α - and β -naphthylazobenzene was pointed out and discussed theoretically by Robin and Simpson. 9)

Experimental

The Preparation of Naphthylazobenzenes. $-\alpha$ -

and β -Naphthylazobenzene (I, II) and their derivatives (III—XXVI) were prepared by the method used in a previous paper.¹⁾ They have been summarized in Tables I and II.

m-(α -Naphthylazo) benzoic Acid (XXIX).—One gram of ethyl m-(α -naphthylazo) benzoate was dissolved in 10 ml. of ethanol containing 0.2 g. of sodium hydroxide. The solution was refluxed on a water bath for an hour, diluted with 50 ml. of water, and acidified with dilute hydrochloric acid to precipitate m-(α -naphthylazo) benzoic acid, which was then recrystallized from ethanol. The yield (0.9 g.) was almost that theoretically expected.

Other naphthylazobenzoic acids were also prepared by the hydrolysis of the corresponding ethyl esters. They have been summarized in Table III.

The Measurement of Spectra. — The absorption spectra were obtained in 95% ethanol as a solvent on a Cary Model 14 M self-recording spectrophotometer with 1 cm. quartz cells.

Summary

- 1) α and β -Naphthylazobenzene and their twenty-four derivatives with a substituent on a benzene ring have been synthesized by the reactions of Grignard reagents with zinc chloride double salts of diazonium salts. Twenty-one of them are new compounds.
- 2) Six naphthylazobenzoic acids have been prepared by the hydrolysis of the corresponding ethyl esters; five of them are new compounds.
- 3) The ultraviolet and visible absorption spectra of these naphthylazobenzene derivatives have been measured.

Department of Chemistry College of General Education The University of Tokyo Meguro-ku, Tokyo

⁹⁾ M. B. Robin and W. T. Simpson, J. Chem. Phys., 36, 585 (1962).